
MCCK User Manual

Version 1.0

Mathematics and Computer Science Division

Argonne National Laboratory

Kyle Gerard Felker

Andrew Robert Siegel

April 25, 2013

1

Contents

1 Introduction 1

2 Background 1

3 Getting Started 2

3.1 Installation . 2

3.2 Running Jobs . 3

3.3 Runtime options . 4

i

1 INTRODUCTION 1

1 Introduction

MCCK, or Monte Carlo Communication Kernel, is a highly-scalable, portable
C based library for simulating Monte Carlo neutron transport environments
in nuclear reactor analysis. MCCK employs domain decomposition and
the Message Passing Interface (MPI) to simulate the computation of fis-
sion cycles of massive numbers of neutral particles in parallel. The active
development of MCCK occurs on the Subversion repository, located at

https://svn.mcs.anl.gov/repos/cesar-codes/mini apps/mcck.

Access is limited to approved users with MCS domain accounts.

2 Background

Computational scientists have long used PDE-based deterministic methods
for nuclear reactor analysis. The stochastic Monte Carlo (MC) approach
offers several potential advantages compared to the deterministic formu-
lations, and arguably extrapolates more readily to the modern hardware
trends that lie on the path to exascale computing. MC simulations, though,
are notoriously expensive computationally and require a tremendous amount
of computing to obtain converged statistics. A number of algorithmic and
implementation challenges thus remain before they can be robustly applied
to practical reactor analysis.

One of these challenges involves developing memory decomposition strate-
gies to enable robust Light Water Reactor (LWR) simulations. The key issue
is that for traditional serial or naturally parallel MC implementationsi.e.,
those based on replication of the global domain on each node neutrons can
independently be created and tracked one by one from creation to absorp-
tion. This approach, however, severely limits available global memory to
the maximum available on an individual node. A significant amount of the
memory per node is needed to tally neutron interactions for the pre-defined
geometric regions, or tally regions. For many classes of calculations such
an approach is adequate; geometric descriptions are simple and the number
of tally regions is modest. However, for real-world reactor core simulations,
the need to tally localized quantities for hundreds of isotopes across tens
of thousands of bins results in a memory requirement for tallies alone of
approximately 1012 bytes of memory.

3 GETTING STARTED 2

One approach to increasing available memory is to implement spatial
domain decomposition for the tallies. When carrying out physical space
domain decomposition, though, tracking particles one by one from birth
to absorption is no longer feasible performance-wise. Each process owns
a subset of the physical space domain and only tracks the particles that
pass within its boundaries. Good performance then requires tracking the
particles in stages that is, moving all particles locally on a partition until
they are absorbed or reach the partition boundary. At the end of each stage
large blocks of particles need to be moved to adjacent partitions [1].

The goal of the mini-application is to gauge the relevant performance
regimes of the spatial domain decomposition technique and evaluate the
benefits of various memory redistribution techniques.

3 Getting Started

3.1 Installation

1. Download the latest stable version of MCCK can be downloaded

https://cesar.mcs.anl.gov/content/software/neutronics

Once downloaded, you can decompress MCCK using the following
command on a linux or Mac OSX system: tar -zxvf mcck-1.0.tgz

This will create the mcck-1.0/ directory. The source code is found
in mcck-1.0/src/

2. (Optional for MADRE or FPMPI logging) MCCK can automatically
link the MADRE and FPMPI libraries, but it presently lacks a con-
figuration script. Therefore, if these features are desired, you must
manually enter the locations of these libraries. Change into the trunk

directory. Edit the Makefile.h file to accurately reflect the locations
of your MADRE and FPMPI source directories.

3. After ensuring that your desired C/MPI compiler is correctly defined in
Makefile.h ”MPICC” variable in the top level directory, type make.
You have a few options when completing this step, all accessed by
defining the corresponding macro as anything on the command line.
For example, “make INCLUDE MADRE=1”

3 GETTING STARTED 3

IMPORTANT NOTE: You must make clean when rebuilding MCCK
with a new option, as the GNU Make utility won’t automatically rec-
ognize changes in the macro definitions

• INCLUDE MADRE=1
Defines the INCLUDE MADRE macro in the MC.h header file
which provides the MC MADRE option for communication. Links
the MADRE library.

• LOG FPMPI=1
Links the FPMPI library with MCCK to produce a text file con-
taining timings of communication after runtime.

• LOG MPE=1
Links the MPE library with MCCK to produce a Jumpshot log
file for visual logging. Cannot use this flag simultaneously with
LOG FPMPI.

4. Change into the test directory.

If compilation completes successfully, the executable ”Main” will be
placed in the main/ subdirectory.

To create your own MCCK Monte Carlo simulator, include “MC.h” in
your source code file and link the library.

3.2 Running Jobs

To run MCCK with default settings, use the following command:

mpiexec [-np NUM PROC] ./Main NPARTICLES GLOBAL LEAKAGE

This command launches an initial batch of NPARTICLES on each of the NUM

PROC. The two arguments are required for all simulations. There is no re-
striction on the number of processors for the simulation (tests have been
executed with over 16,000 processors). The leakage rate, λ, is a lumped
parameter which represents the neutron absorptive processes in an actual
physics code.

(1−λi) is the average probability that a particle is absorbed on processor
i’s physical domain, and λi is the average probability that a particle contin-
ues to leave that processor’s domain. Thus, at each stage, the non-absorbed

3 GETTING STARTED 4

particles on each process are buffered in preparation for movement to the
new processor’s domain.

At each stage, the code will print to STDOUT a line similar to:

stage 1, 160000 total np ([min: 40000 max: 40000 mean:40000.00 delta:0.00])

...

stage 77, 52 total np ([min: 4 max: 19 mean: 13.00 delta:6.00])

until all of the particles have been absorbed and the simulation ends. The
statistics detail the communication stage number, the total number of live
particles, the smallest number of live particles on a processor, the largest
number of live particles on a processor, the mean, and “load imbalance”
factor (i.e. difference between the mean and the max).

3.3 Runtime options

In addition to the standard runtime arguments, the user has several optional
arguments at his or her disposal.

• Strict load balancing (-m strict/nostrict)

Strict load balancing ensures that every processor has an identical
number of live particles at each stage. nostrict is the default.

• Boundary conditions (-b BNDRY REFLECT/BNDRY LEAK/BNDRY PERIODIC)

For the cubic domain, when neutrons travel to the boundary, they
can either bounce back, leave the simulation, or wrap around to the
opposite side. These are the respective options. BNDRY REFLECT is the
default.

• Constant random number seed (-r)

By default, the srand() call in the code is seeded by the system time,
thus creating a new pseudorandnom sequence on each execution. If you
are trying to reproduce results, use this option to seed the generator
with the constant 3333.3.

• Variable leakage file (-f FILE.txt)

REFERENCES 5

By default, the leakage rate λi is constant across processors. However,
one can create an input file formatted as:

6
10 .5
100 .9
10 .5
10 .5
10 .5
10 .75
where the first line is equal to NUM PROCS and each of the subsequent
NUM PROCS lines has the NUM PARTICLES and LEAKAGE local
to that processor.

References

[1] K. G. Felker, A. R. Siegel, and S. F. Siegel. Optimizing memory con-
strained environments in Monte Carlo nuclear reactor simulations. In-
ternational Journal of High Performance Computing Applications, 2012.

	Introduction
	Background
	Getting Started
	Installation
	Running Jobs
	Runtime options

